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PRODUCTION OF HALO PARTICLES BY C OLLECTIVE MODE
EXCITATIONS IN HIGH INTENSITY CHARGED PARTICLE BEAMS

Sean Strasburg and Ronald C. Davidson, Princeton Plasma Physics Laboratory

Abstract to the transverse focusing frequency, the transverse focus-

This paper examines the effects of self-consistent collet:9 coefficients, is defined by/x = w; /fyc, which has

tive oscillations excited in a high-intensity ion beam on thé’Inlts of inverse length. We further assume axisymmetric
unbunched beam propagation/¢¢ = 0 = 9/9z), and

motion of a test particle in the beam core. Even und% roduce the normalized dimensionless self-field potential
ideal conditions, assuming a constant transverse focusi é P

i _ 3 2 .2
force (smooth focusing approximation), and perturbation defined byy(r, ) . Z‘.f or,s)/vm [ S
) : . o We assume a kinetic or warm-fluid[4] Kapchinksij-
about a uniform-density, constant-radius beam, it is fou R _— .
. o . L ; ladimirskij (KV) beam equilibrium, and for this case the
that collective mode excitations, in combination with the

. . e . equilibrium density profile:) (r, s) has the uniform value
applied focusing force and the equilibrium self fields, carn; /xR? in the beam interior and is equal to zero outside
eject particles from the beam core to large radii. b/ q

the beam, defined by> R(s), whereR(s) is the solution
to the envelope equation[2]. We further assume a matched,
1 INTRODUCTION constant-radius beam equilibrium witR(s) = Ry, a

It is increasingly important to develop improved theoret€onstant, given byx — K/Rg)Ro = €*/Rg. Heree is

ical models of halo production and control for chargediN® Unnormalized transverse emittance, ahds the self-
particle beam propagation in high-intensity acceleratofé!d perveance defined bi¢ = 2N, (Ze)*/~m(fc)".
and transport systems[1], with applications to spallation € “depressed” oscillation wavenumbefdimensionless
neutron sources, heavy ion fusion, nuclear waste treatmeHflitS) is defined In terms of the transverse focusing coeffi-
and tritium production. While halo formation mechanismsf'ent“’ pef}’ea”ge’" and equilibrium be.am'radlu’%o, by
such as beam mismatch and nonlinearities associated with = 1 — /£/# ;. The “depressed” cznscnla'El?n wavenum-
nonuniform spce-charge forces have been explored boffer« (dimensional units) is given by” =k v°.
analytically and numerically[2, 3], a fundamental under- A K€y focus of the present analysis is to investigate the
standing of halo production is incomplete. In this papefnetion of atest ionin the combined force of the applied
we consider aew mechanisrfor the production of halo focusing f|eIgIFﬁo , the equmbngm self flelds., and the per-
particles. Namely, we consider, for the first time, the efgurped §elf flelqs as_souated with self-consistent collective
fects of self-consistent collective oscillations excited in g5cillations excited in the beam. We expresstttal self-
high-intensity ion beam on the motion of a test particidield potential asi(rs ) = vo () +d¢(r s ), whereyo (r)

in the beam core. Even under ideal conditions, assumirly Produced by the step-function equilibrium density pro-
a constant transverse focusing force (smooth focusing aj¢ @nd” = r/Ro is the normalized radial coordinate.
proximation), and perturbations about a uniform-density;°" the perturbed potential)(r,s ), we make use of the
constant-radius beam, it is found that collective mode ex¥@rm-fluid model developed by Lund and Davidson[4].
citations, in combination with the applied focusing force! NiS model, simplified by the assumptions of cylindrical

and the equilibrium self fields, can eject particles from th§YMmetry, predicts an infinite class of collective modes
beam core to large radii. d,,, vanishing outside the beam core, with purely radial

dependence, and stably oscillating with eigenfrequency

wn. The radial eigenfunctiody, (#) in the beam inte-

2 THEORETICAL MODEL AND rior (0 < 7 < 1) is defined in terms of the Legendre
ASSUMPTIONS polynomials (of the first kind),P,_1(x) and P,(x), by

We consider an intense nonneutral ion beam with chaf¥n(") = 34 [Pa—1(1=27%) + P, (1 —27%)], where
acteristic beam radiu® and axial momentumy,m,c {An} are constant amplltudes: Thef normal-mode2 oscilla-
propagating in the:-direction with average axial veloc- tion vyavgznur?berélwn} are defined in Ref. [4] by;, =

ity V, = Byc = onst .. The applied transverse focus- K22~ v~ (2n7 = 1)]. , o

ing force in thesmooth focusingpproximation is modeled It 1S readily shgwn that the equation of mpt|on " th.e
by Fp, (x) = —%mw?(x”g + y"g). The effects of self- ap_phed and _equmbrlum .self.flelds, together with the oscil-
electric and self-magnetic fields on the patrticle dynamicléltIng collective modes, is given by

are retained in a self-consistent manner, consistent with the d2r 2 O\ P2
paraxial approximation, and the assumption that Budker’s 752 + (’f + ﬁﬁ) "= (1)
parameter satisifesgy = N,(Z¢)?/mc® < 7,. Here,N, 0
is the number of beam ions per unit axial length, relatedhere P, is the (normalized) canonical angular momen-
to the number density of beam iong(zys ) by Ny, =  tum, RZP, = zy' — yz', which is a constant of the motion.
[ dadm 1, wheres = Byct. The wavenumber equivalent Herei:(7,s ) = ¢o(7)+ 3¢ (7,s ), where the eigenfunctions
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are the Legendre polynomials defined above and the eigesdgeR, of a beam with am =1 mode is not a node of the
frequencies ardw,, }. Equation (1) is a valid description perturbed potential, and so particles may escape.
of the test ion motion, both inside the beam< 1) and
outside the beans(> 1). Test lons With Nonzero Angular Momentum As a
For test-particle motion inside the beam, we obtain[6] Simple example for particles with nonzero angular momen-
. B2 g tum fa + g we r(;,onsider pertcljjrbations a/round an interior
r 2. g _ B ' circular orbit with constant radiug. = r./Rq, requiring
2 YT T TR ;A"(w”(r) coswns. (2) that P} = 74w?. The frequency of small radial oscillations
- i ] about the equilibrium orbit is found to be. = 2w, inde-
On the other hand, for particle motion outside the bea”bendent of the equilibrium radius. If these orbit oscil-
Eq. (1) reduces to the nonlinear autonomous equation  |5tions resonate with the collective mode, the particle will
d2F K\ P? experience a significant energy change.
gzt (ff - —r) r——=0 (3) The linearization for small radial oscillations has funda-
mental and principal resonances when the ratigw. =
For case of vanishing angular momentumefidionalpar- 1, 2m for integersm < n. Forn = 1, the fundamental
ticles), setting® = 0 in Egs. (2) and (3) and replacing resonance is at> = 1, and the Mathieu (or principal) res-
with = 2/ R, yields the appropriate equations. onance is ab? = % Both have important effects on the
Equations (2) and (3), supplemented by the associatel§namics of a single particle.
definitions ofév,,, {w, }, etc, constitute the final forms of
the test-particle orbit equations to be investigated analyt8. 2 Non-Resonant Behaviour

cally and numerically in Secs. 3 and 4. . . . .
y y It is also possible for a test particle to nonresonantly gain

enough energy in the beam interior to escape the beam, dis-
3 THEORY OF THE DYNAMICAL rupting the process of giving the energy back. All particles
SYSTEMS with sufficient energy in the unperturbed case to attain a

In this section we examine several features of the test igAdius greater thana < 1 will be ejected by the collec-
tive modes into the highly nonlinear region exterior to the

motion analytically, using numerical solutions as verifica- ) ) ) L
tion. beam at some point of their trajectory. This minimum ex-

pelled radiust o is a strong function of the mode ampli-
31 Resonant Behaviour tude strgngﬂf, defined as the rms figld energy in thg

mode divided by the rms electrostatic energy in the beam

Meridional Test lons We begin by consideringerid- core. The functionza may be calculated for lowm by

ional particles withP, = 0 in a beam supporting a sin- transforming the perturbation in the Hamiltonian to higher-
gle collective mode with eigennumber The functional order[5], yielding a new energy-like invariant, the new ac-
relationship between the™ mode frequency., and the tion.J, whose maximum is directly related to the maximum
depressed transverse oscillation frequencynakes fun-  excursion of the perturbed particle trajectory. ket 2, the
damental and principal resonances “inaccessible” for allnperturbed maximal radius which will justach the beam
mode numbers. The Hamiltonian expansions predict res-edge due to the collective mode is given by[6]

onances for the'™ mode atw, /w = +2m for integers ) 1/2
m < n. Using{w,}, we can easily obtain an expression .2 _ —(L+ eco) £ [(1+ eco)® + 2ec10] @)
for w? /w? = ¢g2. The minimum ofy,, occurs atv? = A ewey '

at whichg,, = 2n, the uppermost resonance. However, ashe values:; andc, depend only on the depressed trans-
this resonance is approached, the coefficient which mulijerse frequency and the ratio= wy Jw, which in turn de-
plies the mode amplitudé’/ B3 = «(1 — v*), approaches pend only orv, and are given by; = c3(21a — 2a%) and
Zero. c2 = caw(—16a +a?), Wherecgl = w3(64—20a? +a?).
Equation (2) for meridional particles inside a beam supgere, we define = (K/Ry)VT. This expression gives,

porting ann = 1 mode is a Mathieu equation, the same ajthin a few percent over a wide range of parameters, the
that generated by an envelope oscillatidfs) = Ro(1 +  extent of the region near the beam edge which will be
30c coswes) in the limit of smalld.., takingd. = &1 and  gjected from the beam at some point of the trajectory. Fig-

we = wi. However, it is important to distinguish what yre 1 showsz  as a function of normalized mode energy
constitutesinsidethe beam for the two cases. The fluidy jn 5 range over which it is an accurate approximation.

modes are derived for perturbations about a constant ra-

dius beam, sanside the beam:qrresponds tdz| < 1,. 4 NUMERICAL RESULTS

or || < Rp. The mismatch ripple, however, requires

lz] < R(s) = Ro(l + 3d.coswes). SinceR(s) is the The dynamics become more complicated when a trajectory
projection of an energy level, particles initially inside thespends time both inside and outside the beam, and numer-
energy shell of the beam will remain confined in the inteical solutions of the equations are easiest under these con-
rior of a mismatched beam for all time, whereas the beauwfitions.
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Figure 1. Plot ofr  versusl” (%) for v~ = 3. Figure 3: Plot ofz ., versusl’ (%) for v? = 1.

Particles whose energy corresponds to a maxinimm particles can explore out tA» ~ 2 (see Fig. 3). It is

perturbedtrajectory, which we denotey, betweenzs and ) gjpje that, for extremely intense beams, larger collec-

1 W'"_ t_’? ejected from the be_am at some pomF, with thej e mode amplitudes would make accessible even greater
pOSSIbI!Ity of_ large energy gains. In general, eljecte_.d paf'egions of phase space.

ticles either(i) experience negligible energy gains, (@)

obtain a well-defined maximum excursiéh ~ 1.5. This 5 CONCLUSIONS

behaviour is a function of space-charge depressjams

field energy in the'™ mode relative to rms electrostatic en-We have explored the range of particles capable of being
ergy in the beam cor® = £, /&, and the ejected particle’s expelled from the beam core by collective mode excita-
unperturbed maximum radius . tions, and the maximum radii they can attain as KAM sur-
faces are successively dedtiaded with increasing pertur-
bation strength. These processes occur under even ideal
conditions, assuming constant transverse focusing force
and a uniform-density matched-beam equilibrium.
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any particle initially in the beam can escape to, and func-

tions as a KAM curve, giving an indication of the phase

space structure in the halo region.

Finally, for intense beams with sufficiently large ampli-
tude modes, this phase-space spanning curve can be desta-
bilized and break into islands. Above a critical enefgy
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